
1

Requirements Document

Human-autonomous teamwork of ground and air vehicles

Team Members
Yavanni Ensley, yensley2022@my.fit.edu
Younghoon Cho, ycho2021@my.fit.edu

Jaylin Ollivierre, jollivierre2022@my.fit.edu

Faculty Advisor
Thomas Eskridge, teskridge@fit.edu

1

mailto:yensley2022@my.fit.edu
mailto:ycho2021@my.fit.edu
mailto:jollivierre2022@my.fit.edu
mailto:teskridge@fit.edu

Table of Contents

Introduction………………………………………………………………………………3​
 1.1 Purpose………………………………………………………………………………...3​
 1.2 Scope…………………………………………………………………………………..3​
 1.3 Definitions, Acronyms, and Abbreviations……………………………………...3​
 1.4 References……………………………………………………………………………4

Overall Description………………………………………………………………….4​
 2.1 Product Perspective…………………………………………………………………4​
 2.2 Product Functions……………………………………………………………………4​
 2.3 User Characteristics…………………………………………………………………5​
 2.4 Constraints…………………………………………………………………………….5​
 2.5 Assumptions and Dependencies…………………………………………………5

Specific Requirements………………………………………………………………5​
 3.1 Functional Requirements…………………………………………………………6​
 3.2 External Interface Requirements………………………………………………6​
 3.3 Performance Requirements………………………………………………………6​
 3.4 Security Requirements……………………………………………………………6​
 3.5 Non-Functional Requirements…………………………………………………6

2

1. Introduction

1.1 Purpose
●​ The purpose of this document is to outline the functional, interface, and

performance requirements for our project ‘The Human-autonomous teamwork of
ground and air vehicles’. This project is meant to create a means for the
continuous compositional control of ground and air vehicles to allow agents to
work together with/without the assistance of human operators. This document
serves as a reference for both the customer and the development team, ensuring
that both parties are clear on what the product will have the ability to do from a
functional standpoint.

​
1.2 Scope

●​ The system will support the control of drones, tanks, and cars across different
mediums.There will be an interface allowing for collaboration between the agents,
creating a way for them to communicate, with each other, their needs and
abilities. This will be able to be done locally and remotely.

​ 1.3 Definitions, Acronyms, and Abbreviations
Agent – A software or hardware autonomous entity (e.g., ground vehicle, aerial
drone) capable of executing specific tasks and exposing its capabilities via ROS2.

Mission Operator – A user responsible for monitoring and directing autonomous
vehicles, with authority to control multiple agents.

Field Operative – A user responsible for monitoring mission status and receiving
updates, with limited system control access.

ROS2 (Robot Operating System 2) – A middleware framework used for robot
communication, discovery, and coordination.

SLAM (Simultaneous Localization and Mapping) – A computational method
for robots to build a map of an unknown environment while tracking their own
location within it.

GPS (Global Positioning System) – A satellite-based navigation system used to
determine the global position of agents.

HTMX – A lightweight JavaScript library that allows for dynamic HTML
updates without requiring full page reloads.

TailwindCSS – A utility-first CSS framework used to style the frontend of the
application.

PostgreSQL – An open-source relational database management system
(RDBMS).

MongoDB – An open-source NoSQL database system that stores data in
JSON-like documents.

3

Frontend – The client-side portion of the system where users interact with the
application interface.

Backend – The server-side portion of the system responsible for data
management, communication with agents, and business logic.

Node (ROS2) – A process that performs computation in the ROS2 ecosystem.
Each agent is represented as a node.

Namespace (ROS2) – A logical grouping of nodes, topics, and services in ROS2
to organize communication.

​ ​
​ 1.4 References

[1] “ROS 2 Documentation: Foxy.” ROS.org, Open Robotics,
https://docs.ros.org/en/foxy/index.html.

[2] “Simultaneous Localization and Mapping (SLAM).” MathWorks, The
MathWorks, Inc., https://www.mathworks.com/discovery/slam.html.

[3] Tailwind CSS Documentation. Tailwind Labs, https://tailwindcss.com.

[4] HTMX Documentation. Big Sky Software, https://htmx.org/docs.

[5] PostgreSQL Documentation. PostgreSQL Global Development Group,
https://www.postgresql.org/docs.

[6MongoDB Documentation. MongoDB, Inc., https://www.mongodb.com/docs.

2. Overall Description

​ 2.1 Perspective

●​ This system will be a web-based platform that integrates with ROS2 to manage an
environment between autonomous ground and aerial vehicles. This is our middle
layer between the human operator and the independent agents, providing human
oversight, and compositional control to provide guidance when necessary. The
interface will be a combination of existing frameworks: ROS2, GPS/SLAM
mapping, wireless communication and

2.2 Functions

●​ This system will support multi-agent monitoring through a map and status
overview. The agents in the system will communicate their status on the interface
to help the others build their behaviors. This allows the agents to help each other

4

https://docs.ros.org/en/foxy/index.html?utm_source=chatgpt.com
https://docs.ros.org/en/foxy/index.html
https://www.mathworks.com/discovery/slam.html?utm_source=chatgpt.com
https://www.mathworks.com/discovery/slam.html
https://tailwindcss.com?utm_source=chatgpt.com
https://tailwindcss.com
https://htmx.org/docs
https://www.postgresql.org/docs
https://www.postgresql.org/docs
https://www.mongodb.com/docs

based on how they interpret the statuses of the neighboring agents. Offer the
ability to control one or more agents at a time. Outside users will be able to
externally access the system through a remote server.

2.3 User Characteristics

●​ Mission operators: Trained users that will know how to control and reassign the
robots with different tasks. Operators will have access to all system functions, live
feeds, and interfaces to interact with the agents.

●​ Field Operatives: Observers of mission/task progress. They will not have
complex/administrative access to control vehicles, but will be able to see what is
happening and what the directives are for the agents.

2.4 Constraints

●​ Network latency when operating over networks that could be
unstable/inconsistent.

●​ ROS2 Compatibility with all of the agents involved.
●​ The system has to run on modern browsers with HTMX/TailwindCSS frontend

support.
●​ The database must have compatibility with PostgreSQL or MongoDB for the

project’s infrastructure.

2.5 Assumptions and Dependencies

●​ Each robot can send data relevant to its location.
●​ GPS or SLAM mapping are consistently available for mapping and give accurate

information
●​ The database is reliable, available, and configured.
●​ All agents can run ROS2 nodes compatible with our backend.
●​ Need robots to be on a synchronized clock.
●​ Secure authentication for role-based access.
●​ ROS2 discovery of active agents.
●​ The system can be scaled to a larger or smaller number of robots based on

foundation.

​

3. Specific Requirements

​ 3.1 Functional Requirements

​ ​ The system shall:

●​ Authenticate users and ensure proper permissions are enforced.
●​ Discover the available agents using ROS2
●​ A dashboard to show, agents, their locations, and the status of their

mission

5

●​ Allow the control of select agents using the input schemes required for
each of the vehicles.

●​ Enable monitoring of multiple agents
●​ Support the handoff/collaboration of tasks from agent-agent
●​ Report/Notify of any issues encountered during tasking

3.2 External Interface Requirements

●​ User: Web application with an interactive design (desktop and mobile)
●​ Hardware: GPS modules, cameras, and sensors
●​ Software: Integrates with ROS2, PostgreSQl/MongoDB, and our backend

python server

3.3 Performance Requirements

●​ The system shall update agent status and map location with latency ≤ 1
second in stable network conditions.

●​ The system shall support at least 10 simultaneous active agents without
significant degradation.

●​ Map and control feeds shall refresh at least 5 times per second for smooth
monitoring.

3.4 Security Requirements

●​ All remote connections must use encrypted channels (SSL/VPN).
●​ Role-based access control must prevent field operatives from sending

commands.
●​ The system shall log all operator interventions for accountability.

3.5 Non-Functional Requirements

●​ Scalability: The system must support the addition of agents and robot
types with minimal reconfiguration.

●​ Usability: Interface should be intuitive and user-friendly, with simple
navigation for both operators and field operatives.

●​ Maintainability: System codebase should be modular, leveraging ROS2
packages and well-documented APIs to ensure consistent upkeep.

6

